1,010 research outputs found

    Enantioselective disposition of (R,R)-formoterol, (S,S)-formoterol and their respective glucuronides in urine following single inhaled dosing and application to doping control

    Get PDF
    Formoterol is a long‐acting beta2‐adrenoceptor agonist (LABA) used for treatment of asthma and exercise‐induced bronchoconstriction. Formoterol is usually administered as a racemic (rac‐) mixture of (R,R)‐ and (S,S)‐enantiomers. While formoterol is restricted by the World Anti‐Doping Agency (WADA), inhalation of formoterol is permitted to a predetermined dose (54 μg/24 hours) and a urine threshold of 40 ng/mL. However, chiral switch enantiopure (R,R)‐formoterol is available, effectively doubling the therapeutic advantage for the same threshold. The aim of this study was to investigate whether formoterol exhibits enantioselective urinary pharmacokinetics following inhalation. Six healthy volunteers were administered a 12 μg inhaled dose of rac‐formoterol. Urine was collected over 24‐hours and analysed by enantioselective UPLC‐MS/MS assay. Total (free drug plus conjugated metabolite) median (min‐max) rac‐formoterol urine levels following inhalation were 1.96(1.05‐13.4) ng/mL, 1.67(0.16‐9.67) ng/mL, 0.45(0.16‐1.51) ng/mL, 0.61(0.33‐0.78) ng/mL, and 0.17(0.08‐1.06) ng/mL at 2, 4, 8, 12 and 24 hours, respectively, well below the 2019 urine threshold. The proportion of conjugation differed between enantiomers with glucuronide conjugation much greater for (R,R)‐formoterol (around 30‐60% of total) compared to (S,S)‐formoterol (0‐30%). There was clear evidence of inter‐individual enantioselectivity observed in the ratios of (R,R):(S,S)‐formoterol, where (S,S)‐ was predominant in free formoterol, and (R,R)‐ predominant in the conjugated metabolite. In conclusion, rac‐formoterol delivered by inhalation exhibits enantioselective elimination in urine following single dose administration. Enantioselective assays should be employed in doping control to screen for banned beta2‐agonist chiral switch products such as (R,R)‐formoterol, and total hydrolysed rac‐formoterol is warranted to account for inter‐individual differences in enantioselective glucuronidation

    Beta2-adrenergic ligand racemic formoterol exhibits enantioselective disposition in blood and skeletal muscle of humans, and elicits myocellular protein kinase A-signalling at therapeutic inhaled doses

    Get PDF
    While studies have demonstrated substantial differences in beta2-adrenergic agonist enantiomer pharmacology, enantioselective disposition of long-acting beta2-adrenergic ligand racemic (rac)-formoterol in blood is unexplored after inhaled therapy given analytical challenges. Furthermore, information on enantioselective disposition and partitioning of beta2 -adrenergic agonist in skeletal muscle is absent despite its promising data on muscle anabolism in humans. Using a sensitive UPLC-MS/MS (ultra-high performance liquid chromatography-mass spectrometry) assay, we determined disposition of (R,R)-formoterol and (S,S)-formoterol in plasma and skeletal muscle samples from 11 non-asthmatic men who had inhaled rac-formoterol at therapeutic doses (2×27 μg). Mean (SD) concentrations of (R,R)- and (S,S)-formoterol in plasma and in muscle biopsies of the vastus lateralis 1 h after inhalation of formoterol were 31 (15) and 45 (18) pg×mL-1 for (R,R)-formoterol and (S,S)-formoterol, respectively, in plasma, and 0.56 (0.32) and 0.51 (0.29) pg×mgwet wt-1, respectively, in muscle. Formoterol exhibited different enantioselective disposition in plasma and muscle (p R,R):(S,S)-formoterol ratio was lower than 0 [-0.17(0.07), p R,R):(S,S)-formoterol ratio was slightly higher than 0 [0.04(0.07), p R,R):(S,S)-formoterol ratio in muscle was related to muscle fibre-type composition. Furthermore, formoterol induced an approximately two-fold increase in muscle p-PKASer/thr phosphorylation (p 2 -adrenergic response. Collectively, these findings suggest that formoterol exhibits modest enantioselective disposition in plasma after inhaled therapy in humans, which appear related to a greater (R,R)-enantiomer disposition in skeletal muscle that may be dependent on fibre-type composition

    Shotgun proteomics as a powerful tool for the study of the proteomes of plants, their pathogens, and plant-pathogen interactions

    Get PDF
    The interaction between plants and pathogenic microorganisms is a multifaceted process mediated by both plant- and pathogen-derived molecules, including proteins, metabolites, and lipids. Large-scale proteome analysis can quantify the dynamics of proteins, biological pathways, and posttranslational modifications (PTMs) involved in the plant–pathogen interaction. Mass spectrometry (MS)-based proteomics has become the preferred method for characterizing proteins at the proteome and sub-proteome (e.g., the phosphoproteome) levels. MS-based proteomics can reveal changes in the quantitative state of a proteome and provide a foundation for understanding the mechanisms involved in plant–pathogen interactions. This review is intended as a primer for biologists that may be unfamiliar with the diverse range of methodology for MS-based shotgun proteomics, with a focus on techniques that have been used to investigate plant–pathogen interactions. We provide a summary of the essential steps required for shotgun proteomic studies of plants, pathogens and plant–pathogen interactions, including methods for protein digestion, identification, separation, and quantification. Finally, we discuss how protein PTMs may directly participate in the interaction between a pathogen and its host plant

    Benchmarking DNA extraction methods for phylogenomic analysis of sub-Antarctic Rhodococcus and Williamsia species

    Get PDF
    Bacteria containing mycolic acids in their cell envelope are often recalcitrant to cell lysis, so extracting DNA of sufficient quality for third-generation sequencing and high-fidelity genome assembly requires optimization, even when using commercial kits with protocols for hard-to-lyse bacteria. We benchmarked three spin-column-based kits against a classical DNA extraction method employing lysozyme, proteinase K and SDS for six lysozyme-resistant, sub-Antarctic strains of Corynebaceriales. Prior cultivation in broths containing glycine at highly growth-inhibitory concentrations (4.0–4.5%) improved cell lysis using both classical and kit methods. The classical method produced DNA with average fragment sizes of 27–59 Kbp and tight fragment size ranges, meeting quality standards for genome sequencing, assembly and phylogenomic analyses. By 16S rRNA gene sequencing, we classified two strains as Williamsia and four strains as Rhodococcus species. Pairwise comparison of average nucleotide identity (ANI) and alignment fraction (AF), plus genome clustering analysis, confirmed Rhodococcus sp. 1163 and 1168 and Williamsia sp. 1135 and 1138 as novel species. Phylogenetic, lipidomic and biochemical analyses classified psychrotrophic strains 1139 and 1159 as R. qingshengii and R. erythropolis, respectively, using ANI similarity of >98% and AF >60% for species delineation. On this basis, some members of the R. erythropolis genome cluster groups, including strains currently named as R. enclensis, R. baikonurensis, R. opacus and R. rhodochrous, would be reclassified either as R. erythropolis or R. qingshengii

    A comparison of laboratory analysis methods for total phenolic content of cider

    Get PDF
    Total phenolic content is widely accepted as a key measure of quality for cider. Apple juice and cider, made from six apple varieties including dessert and cider apples, were analysed for total phenolics using three different methods: (a) the Folin-Ciocalteu method, (b) the Somers method (a spectrophotometric method developed specifically for wine), and (c) ultra-performance liquid chromatography (UPLC) as a benchmark test. Of these approaches, the Somers method had the strongest correlation with UPLC with an R2 value of 0.99, whilst the Folin-Ciocalteu correlated with UPLC with an R2 value of 0.89. The Folin-Ciocalteu method also had a strong positive correlation with the Somers approach with an R2 value of 0.91. Correlations between methods were strongest for apple varieties that were naturally high in phenolic content. These results highlight the potential of the Somers method to rapidly, inexpensively, and accurately report the total phenolic content of apple juice and ciders made from dessert and cider apple varieties

    Large-scale protein and phosphoprotein profiling to explore potato resistance mechanisms to Spongospora subterranea infection

    Get PDF
    Potato is one of the most important food crops for human consumption. The soilborne pathogen Spongospora subterranea infects potato roots and tubers, resulting in considerable economic losses from diminished tuber yields and quality. A comprehensive understanding of how potato plants respond to S. subterranea infection is essential for the development of pathogen-resistant crops. Here, we employed label-free proteomics and phosphoproteomics to quantify systemically expressed protein-level responses to S. subterranea root infection in potato foliage of the susceptible and resistant potato cultivars. A total of 2,669 proteins and 1,498 phosphoproteins were quantified in the leaf samples of the different treatment groups. Following statistical analysis of the proteomic data, we identified oxidoreductase activity, electron transfer, and photosynthesis as significant processes that differentially changed upon root infection specifically in the resistant cultivar and not in the susceptible cultivar. The phosphoproteomics results indicated increased activity of signal transduction and defense response functions in the resistant cultivar. In contrast, the majority of increased phosphoproteins in the susceptible cultivar were related to transporter activity and sub-cellular localization. This study provides new insight into the molecular mechanisms and systemic signals involved in potato resistance to S. subterranea infection and has identified new roles for protein phosphorylation in the regulation of potato immune response

    Leaves, not roots or floral tissue, are the main site of rapid, external pressure-induced ABA biosynthesis in angiosperms

    Get PDF
    Rapid biosynthesis of abscisic acid (ABA) in the leaf, triggered by a decrease in cell volume, is essential for a functional stomatal response to vapour pressure deficit (VPD) in angiosperms. However, it is not known whether rapid biosynthesis of ABA is triggered in other plant tissues as well. Through the application of external pressure to flower, root and leaf tissues, we test whether a reduction in cell volume can trigger rapid increases in ABA levels across plant body in two species Solanum lycopersicum and Passiflora tarminiana. Our results show that, in contrast to rapid ABA synthesis in the leaf, flower and root tissue did not show a significant, rapid increase in ABA level in response to a drop in cell volume over a short time-frame, suggesting that fast ABA biosynthesis occurs only in leaf, not in flower or root tissues. A gene encoding the key, rate-limiting carotenoid cleavage enzyme (9`-cis-epoxycarotenoid dioxygenase, NCED) in ABA biosynthetic pathway in S. lycopersicum, NCED1, was unregulated to lesser degree in flowers and roots compared to leaves in response to applied pressure. In both species, floral tissues contained substantially lower levels of NCED substrate 9`-cis-neoxanthin than leaves, and this ABA precursor could not be detected in roots. Slow and minimal ABA biosynthesis was detected after 2 h in petals, indicating that floral tissue is capable of synthesising ABA in response to sustained water deficit. Our results indicate that rapid ABA biosynthesis predominantly occurs in the leaves, and not in other tissues
    • …
    corecore